1)得到annotations/json格式:labelme2coco.py
输入:
# 把所有的jpg和json都放到了images目录下
base_dir = '/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/image'
输出:
# 把训练集转化为COCO的json格式
l2c_train = Lableme2CoCo()
train_instance = l2c_train.to_coco(train_path)
l2c_train.save_coco_json(train_instance, '/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/annotations/instances_train2017.json')
# 把验证集转化为COCO的json格式
l2c_val = Lableme2CoCo()
val_instance = l2c_val.to_coco(val_path)
l2c_val.save_coco_json(val_instance, '/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/annotations/instances_val2017.json')
2)得到根目录下单个json文件:getclassnum.py
输入:cocojson="/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/annotations/instances_train2017.json"
输出:
COCO_train.json
3)得到VOC xml标注文件:createXML.py
输入:
_IMAGE_PATH = '/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/imageonly/'
with open("COCO_train.json", "r") as f:
ann_data = json.load(f)
输出:
_ANNOTATION_SAVE_PATH = '/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/data/VOC2018/Annotations'
4)生成ImageSets/Main/text文件:darknet/traintxt.py
输入:
xmlfilepath = '/Users/sisyphus/tf-faster-rcnn/data/VOCdevkit2007/VOC2007/Annotations'
输出:
saveBasePath = "/Users/sisyphus/tf-faster-rcnn/data/VOCdevkit2007/VOC2007/"
ftrainval = open(os.path.join(saveBasePath,'ImageSets/Main/trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath,'ImageSets/Main/test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath,'ImageSets/Main/train.txt'), 'w')
fval = open(os.path.join(saveBasePath,'ImageSets/Main/val.txt'), 'w')
PS:
数据增强:
/Users/sisyphus/TIANCHI_XUELANG_AI_gangban/src/DataAugForTrainAndTest_DET.py
重命名jpg或xml名称:
mAP/changeTextName.py
修改xml中对应图片名称:
py/xmlEdit2.py
没有评论:
发表评论